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[1] The scale dependence of the matrix diffusion coefficient
(Dm) for fractured media has been observed at variable scales
from column experiments to field tracer tests. In this paper,
we derive an effective Dm for multimodal heterogeneous
fractured rocks using characteristic distributions of matrix
properties and volume averaging of the mass transfer
coefficient. The effective field-scale Dm is dependent on the
statistics (geometric mean, variance, and integral scale) of
laboratory-scale ln(Dm) and on the domain size. The effective
Dm increases with the integral scales and is larger than the
geometric mean of ln(Dm). Monte Carlo simulations with
1000 realizations of heterogeneousDm fields were conducted
to assess the accuracy of the derived effective Dm.
Citation: Dai, Z., A. Wolfsberg, Z. Lu, and P. Reimus (2007),
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fractured rocks, Geophys. Res. Lett., 34, L07408, doi:10.1029/
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1. Introduction

[2] In saturated fractured-rock systems, where the primary
pathway for groundwater flow and solute transport is through
fractures, groundwater in the matrix is considered immobile
in dual-porosity conceptual models [Tang et al., 1981;
Sudicky and Frind, 1982]. Thus, although the bulk of the
water travels through the fractures, a very large reservoir of
water in the matrix can act to store and reduce mobility of
contaminants via matrix diffusion [Robinson, 1994].Carrera
et al. [1998] presented a comprehensive study of matrix
diffusion and concluded that Dm is one of the parameters that
govern contaminant transport in fractured rocks. Recent
field-scale tracer test interpretations by Reimus and Callahan
[2007] highlighted the significance of fracture apertures in
governing mass transfer between fractures and matrix, par-
ticularly when the field-scale fractures in which solutes flow
may have larger apertures than those used in laboratory
columns. Ultimately, mass transfer between fractures and
matrix depends onDm, fracture aperture, and matrix porosity.
This paper addresses scaling of heterogeneous Dm.
[3] Over the years, the ability to fully characterize the

parameters in the fracture-matrix mass transfer process has
not kept pace with numerical and modeling expertise [Liu et
al., 2007]. Transport experiments are usually conducted at
the sub-meter or column scale under conditions in which
flow rates, tracer injections and other conditions are well
controlled. Assuming relatively little heterogeneity in such
experiments, analytical or semi-analytical models have been

used to estimate fracture transport parameters [Cormenzana,
2000]. However, there remains no practical unifying theory
to integrate laboratory-scale parameters in field-scale pre-
dictions for risk assessment or remedial design.
[4] Recent studies indicate that Dm estimated from the

column transport experiments may not be suitable for
modeling field-scale solute transport in fractured rocks.
Shapiro [2001] reported that effective Dm in kilometer-scale
systems is much greater than estimates from laboratory
experiments due to complex, possibly advective, field-scale
transport processes. Neretnieks [2002] and Andersson et al.
[2004] estimated the effective Dm from field tracer test data
at the Äspö site and obtained some values about 30 times
greater than their laboratory-scale estimates, which they
attributed to increased diffusion surface area in their field
test. Liu et al. [2004] reported that the effective Dm at the
field scale is generally greater than that at laboratory scales
and tends to increase with the testing scale. While several
potential mechanisms have been identified, they found that
this interesting scale dependence may be related to rock
matrix heterogeneity in fractured rock. Based on numerical
experiments, Zhang et al. [2006] empirically determined a
formula for estimating the effective Dm. However, their
equation does not show dependence of the effective Dm on
the spatial scales.
[5] The work we present here focuses on the spatial-scale

dependence of the effective Dm in multimodal heteroge-
neous rocks. We start from characterization of heteroge-
neous matrix properties to build the covariance function of
ln(Dm). Then, we derive equations to describe the relation-
ship between the effective Dm, the statistics of Dm measure-
ments at laboratory scales, and the domain size. Monte
Carlo simulations are performed to assess the accuracy of
the derived effective Dm in a synthetic example.

2. Spatial Statistics of Multimodal Dm

[6] Spatial covariance models developed from centime-
ter-scale measurements are important in upscaling effective
parameters at larger scales. To characterize heterogeneous
aquifer system, Lu and Zhang [2002] and Ritzi et al. [2004]
presented a general form of multimodal correlation model of
permeability. Here we apply it to modeling the covariance
of ln(Dm). Heterogeneity of Dm comes from the variations
of matrix physical and chemical properties within and
across matrix units. Assuming a field-scale model made
up of N matrix units in mutually exclusive occurrences (see
Figure 1, N = 3), the distribution of matrix properties can be
characterized by an indicator random variable Ik(x),

Ik xð Þ ¼ 1; if unit k occurs at location x

0; otherwise:

�
ð1Þ
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Then, the ln(Dm), denoted as Y(x), can be expressed as

Y xð Þ ¼
XN
k¼1

Ik xð ÞYk xð Þ; ð2Þ

where Yk(x) represents ln(Dm) within unit k. If the volume
fraction of unit k is denoted as pk, the expected value of Ik is
equal to pk (k = 1, 2, . . ., N). The composite mean MY and
variance sY

2 of Y(x) can be expressed as [see Ritzi et al.,
2004]

MY ¼
XN
k¼1

pkmk ; s2
Y ¼

XN
k¼1

pks2
k þ

1

2

XN
k¼1

XN
i¼1

pkpi mk � mið Þ2;

ð3Þ

where mk and sk
2 denote the mean and variance of Yk(x),

respectively.
[7] Using indicator variables, we apply the transition

probability for measuring spatial continuity of facies dis-
tributions [Carle and Fogg, 1997]. The transition prob-
ability in 8 direction, tki(h8), is defined by

tki h8
� �

¼ Pr Ii xþ h8
� �

¼ 1 and Ik xð Þ ¼ 1
� �

=Pr Ik xð Þ ¼ 1f g;
ð4Þ

where h8 is the lag distance in 8 direction. Similar to the
permeability covariance defined by Dai et al. [2005], the
composite covariance CY(h8) of Y(x) can be represented in
the term of proportion, transition probability, and the in-unit
or cross-unit covariance of Yk(x) as

CY h8
� �

¼
XN
k¼1

XN
i¼1

Cki h8
� �

þ mkmi

� �
pktki h8

� �
�M2

y : ð5Þ

By assuming that the cross-covariances are negligible, i.e.,
Cki(h8) = 0 for k 6¼ i [Dai et al., 2004], we can write the
covariance of multimodal Y(x) in the following form:

CY h8
� �

¼
XN
k¼1

pkCkk h8
� �

tkk h8
� �

þ 1

2

XN
k¼1

XN
i¼1

mk � mið Þ2pk

	 pi � tki h8
� �� �

: ð6Þ

As derived by Dai et al. [2004], we use exponential
functions for transition probability and auto-covariance
Ckk(h8),

tki h8
� �

¼ pi þ dki � pið Þe�h8=lI k; i ¼ 1;N
� �

; ð7Þ

Ckk h8
� �

¼ s2
ke

�h8=lk k ¼ 1;N
� �

; ð8Þ

where dki is the Kronecker delta, lI is the correlation length
of the indicator variable in 8 direction, and lk is the integral
scale of Yk(x), which is a measure of spatial correlation of
Yk(x), roughly the distance beyond which an attribute is
considered to be uncorrelated. Substituting equations (7)
and (8) into equation (6), we obtain the composite
covariance function as

CY h8
� �

¼
XN
k¼1

p2ks
2
ke

�h8
lk þ

XN
k¼1

pk 1� pkð Þs2
ke

�h8
ly

þ 1

2

XN
k¼1

XN
i¼1

mk � mið Þ2pkpie�
h8
lI ; ð9Þ

where ly = lklI/(lk + lI). This covariance function will be
used to upscale the Dm from the laboratory scale to the field
scale.

3. Effective Dm of Multimodal Matrix

[8] Tang et al. [1981] utilized analytical or semi-
analytical solutions to model solute transport in fractured
rocks, and derived an equation to represent the mass transfer
coefficient as expressed in equation (10), which describes
the rate at which a particular solute transfers between
fractures and the rock matrix material [similarly used by
Reimus and Callahan, 2007]. For heterogeneous matrix
material, the effective mass transfer coefficient (CMT) at the
field scale can be computed based on effective diffusion
coefficient (~Dm), effective matrix porosity (~f) and effective
fracture aperture (~b) as:

CMT ¼
~f
ffiffiffiffiffiffiffi
~Dm

p
~b

: ð10Þ

[9] Taking the small-scale mass transfer coefficient as a
spatial random variable, the effective field-scale mass trans-
fer coefficient can be expressed as the volume averaging of
small-scale mass transfer coefficients. We assume that Y(x)
is a one-dimensional (along flow direction), second-order
stationary spatial random variable. By substituting the

Figure 1. Heterogeneous matrix with three units created with TPROG [Carle and Fogg, 1997] by using the data listed in
Table 1 (U1 = white, U2 = grey, and U3 = black). The fracture half aperture is 0.01 m and the fracture spacing is 2 m.
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small-scale porosity and the half aperture with their
effective values ~f and ~b, we have

CMT ¼
~f
~bL

Z
L

e
1
2
Y xð Þdx; ð11Þ

where L is the length of the one-dimensional domain and x
is the spatial coordinate. By comparing equations (11) and
(10), we obtain

~Dm ¼ 1

L

Z
L

e
1
2
Y xð Þdx


 �2

; ð12Þ

which focuses this evaluation on Dm variability with the
assumption that ~b and ~f have been estimated. Decomposing
Y(x) as the mean MY and zero-mean perturbation Y0(x),
Y(x) = MY + Y0(x), we rewrite equation (12) as a double
integral in the one-dimensional domain,

~Dm ¼ 1

L2
DG

m

Z
L

Z
L

e
1
2
Y 0 xð ÞþY 0 yð Þð Þdxdy


 �
; ð13Þ

where Dm
G = eMY is the geometric mean of laboratory-scale

Dm and y is also a one-dimensional spatial variable. By
using Taylor expansion and assuming the variance of Y(x)
smaller than unity, equation (13) becomes,

~Dm ¼ 1

L2
DG

m


Z
L

Z
L



1þ 1

2
Y 0 xð Þ þ Y 0 yð Þð Þ

þ 1

8
Y 0 xð Þ2þY 0 yð Þ2þ2Y 0 xð ÞY 0 yð Þ

��
dxdy


 �
: ð14Þ

If we take the expectation of equation (14) to quantify the
effective Dm, then

~Dm

� 

¼ DG

m 1þ s2
Y

4
þ 1

4L2

Z
L

Z
L

CY x; yð Þdxdy

 �
 �

; ð15Þ

where, CY(x,y) =hY0(x)Y0(y)i is the covariance that can be
substituted using equation (9) with h8 = jx � yj, so that 8
is in the same direction as that of the one-dimensional
variable. Then, we have the effective Dm as

h~Dmi ¼ DG
m

 
1þ s2

Y

4
þ 1

2L2

 XN
k¼1

p2ks
2
kl

2
k

L

lk

� 1þ e
� L

lk


 �

þ
XN
k¼1

pk 1� pkð Þs2
kl

2
y

L

ly
� 1þ e

� L
ly


 �

þ 1

2

XN
k¼1

XN
i¼1

mk � mið Þ2pkpil2
I

L

lI

� 1þ e
� L

lI


 �!!
: ð16Þ

[10] In equation (16), the effective Dm increases with the
variance. If the matrix is homogeneous, the variance is 0
and the effective Dm is equal to the geometric mean, which
indicates that the heterogeneity of matrix properties is the
source of the scale dependence of Dm.
[11] To further investigate the scale dependence of Dm,

we set up a synthetic field-scale heterogeneous matrix
system with three units (Table 1 and Figure 1). Using
equation (16) and the data listed in Table 1, we plot the
effective Dm vs. the integral scale of unit 1 (U1) in Figure 2,
which shows that the effective Dm increases with the
increasing integral scales. Additional numerical experiments
also show that the effective Dm is positively correlated to the
integral scales of units 2 and 3, and the indicator correlation
length.

4. Effective Dm of Bimodal and Unimodal Matrix

[12] In equation (16), if N = 2, Y(x) follows a bimodal
distribution and the expression of the effective Dm becomes,

h~Dmi ¼ DG
m 1þ s2

Y

4
þ 1

2L2

X2
k¼1

p2ks
2
k l2

k

L

lk

� 1þ e
� L

lk


 �
  

þ l2
y

L

ly
� 1þ e

L
ly

! !
þ m1 � m2ð Þ2p1p2l2

I

	 L

lI

� 1þ e
� L

lI


 ���
: ð17Þ

If N = 1, Y(x) follows a unimodal distribution, equation (16)
can be simplified as,

h~Dmi ¼ DG
m 1þ s2

Y

4
1þ 2l2

L2
L

l
� 1þ e�

L
l


 �
 �
 �
: ð18Þ

Furthermore, if l/L ! 0, which means the field is not
correlated or Y(x) are totally randomly distributed, equation
(18) is approximated as:

h~Dmi � DG
m 1þ s2

Y

4


 �
; ð19Þ

Table 1. Mean and Variance of Yk(x), Proportions, and Integral

Scales of the Units

Units k pk mk Dmk
G , m2/s sk

2 lI, m lk, m ly, m

U1 1 0.64 �21.55 4.4	10�10 0.58 5 4.86 2.46
U2 2 0.14 �20.62 1.1	10�9 0.45 5 3.58 2.09
U3 3 0.22 �20.26 1.5	10�9 0.65 5 4.27 2.30

Figure 2. Effective Dm versus integral scale of U1.
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which is a first-order approximation of Zhang et al. [2006,
equation (10)]. On the other hand, if l/L is sufficiently
large, equation (18) is approximated as:

h~Dmi � DG
m 1þ s2

Y

2


 �
: ð20Þ

[13] Assuming that in equation (18) the mean of unimodal
Y(x) is �22.6 ln(m2/s), the variance is 0.88, and the domain
size is 1000 m, we plot effective Dm as a function of the
integral scale in Figure 3a. The effective Dm increases with
the integral scale. For comparison, the effective Dm

computed with equations (19) and (20), which correspond
with the cases that l! 0 and l is sufficiently large, are also
illustrated in Figure 3a (assume L is constant). When l! 0,
the effective Dm is 1.86	10�10 m2/s and is greater than the
geometric mean (1.53	10�10 m2/s). When l = 300 m, it is
2.01	10�10 m2/s, and when l is sufficiently large, it is
2.21	10�10 m2/s. Figure 3b shows that the effective Dm

decreases when the ratio L/l increases.

5. Monte Carlo Simulations

[14] To assess the accuracy of the effective Dm, we
conducted Monte Carlo simulations for conservative tracer
transport in unimodal fractured rocks with the generalized
double porosity model (GDPM [Zyvoloski et al., 2003]).
The GDPM numerical model has a length of 1000 m, a
fracture spacing of 2 m, and a half aperture of 0.01 m. The
model has 1001 fracture nodes (constant spatial space Dx =
1 m) and 10010 matrix nodes (each fracture node connects
to 10 matrix nodes perpendicular to the flow direction with
variable spatial spaces from 0.01 to 0.4 m). At the first
fracture node (point A in Figure 1), the water injection rate
is constant at 0.0116 kg/s. In the injection water, the solute
concentration is normalized to 1. For the purpose of this
demonstration, the only spatial random variable in the
simulations is Dm.
[15] The heterogeneous fields of unimodal Y(x) were

generated with a Gaussian random field generator [Zhang
and Lu, 2004]. We generated 1000 realizations with a mean
Y(x) of �22.6 ln(m2/s), variance of 0.88, and integral scale
of 300 m. The quality of the generated Y(x) fields was

checked by comparing the covariance calculated from the
generated realizations with the analytical, exponential
covariance model. The comparison shows that the realiza-
tions match the specified mean, variance, and integral scale.
Then, the generated Y(x) are converted to Dm for GDPM
models.
[16] During the Monte Carlo simulations, we compute the

mean, variance, and the 95% confidence interval of the
concentration breakthrough at the last fracture node (point B
in Figure 1) after each simulation, and check the evolution
of concentration variance and mean with the number of
simulations until the solution of Monte Carlo simulations
converges. Figure 4 shows that the concentration break-
through simulated with the effective Dm computed by
equation (18) matches well to the mean concentration after
1000 Monte Carlo simulations, while with the geometric
mean of Dm the concentration is overestimated. This result

Figure 3. Effective Dm versus (a) the unimodal integral scale and (b) the ratio of domain size and integral scale.

Figure 4. Computed concentration breakthroughs from the
effective Dm, geometric mean and Monte Carlo simulations,
as well as the concentration bounds of the 95% confidence
intervals.
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indicates that the derived effective Dm is an accurate
estimate of Dm for the field-scale modeling.

6. Discussion and Conclusion

[17] The heterogeneity of matrix properties is the source
of the scale dependence of Dm, which comes from the
variations of matrix physical and chemical properties within
and across matrix units. The covariance of Y(x) can be used
to characterize the matrix heterogeneity with transition
probability of the multimodal matrix units and the
covariance of Y(x) within each unit. The major factors
affecting Dm heterogeneity include matrix porosity, tortu-
osity, solute charge, and temperature. In this paper we take
Dm as a lumped spatial random variable to incorporate the
variation of all these factors and upscale Dm from the
laboratory scale to the field scale.
[18] The effective Dm is dependent on the geometric

mean, variance, integral scale, and domain size. Its value
increases with the integral scale and is greater than the
geometric mean. Monte Carlo simulations with 1000
realizations of heterogeneous matrix diffusion fields
demonstrate that the derived effective Dm is an accurate
estimation of Dm for the field-scale transport modeling in
the fractured rocks. The effective Dm is derived under the
condition that the variance is smaller than unity. However,
the first-order perturbation might give accurate estimates of
effective Dm for variance as large as 4, as discussed by Dai
et al. [2004] for deriving macrodispersion equations.
Further work is needed to identify the maximum variance
that is applicable for the first-order perturbation method.
The next extension of this effort will be to incorporate the
influence of other processes affecting mass transfer such as
spatial variations in aperture and matrix porosity.
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